PHYSICAL REVIEW E VOLUME 58, NUMBER 2 AUGUST 1998

Universal finite-size scaling functions for percolation on three-dimensional lattices
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Using a histogram Monte Carlo simulation methgtMCSM), Hu, Lin, and Chen found that bond and site
percolation models on planar lattices have universal finite-size scaling functions for the existence probability
E, . the percolation probabilit?, and the probabilityV, for the appearance of percolating clusters in these
models. In this paper we extend above study to percolation on three-dimensional lattices with various linear
dimensiond.. Using the HMCSM, we calculate the existence probabiiityand the percolation probability
for site and bond percolation on a simple-cuksc) lattice, and site percolation on body-centered-cubic and
face-centered-cubic lattices; each lattice has the same linear dimension in three dimensions. Using the data of
E, andP in a percolation renormalization group method, we find that the critical exponents obtained are quite
consistent with the universality of critical exponents. Using a small number of nonuniversal metric factors, we
find thatE, and P have universal finite-size scaling functions. This implies that the crifigalk a universal
guantity, which is 0.265%0.005 for free boundary conditions and 0.923.005 for periodic boundary condi-
tions. We also find thaw,, for site and bond percolation on sc lattices have universal finite-size scaling
functions.[S1063-651X98)09008-4

PACS numbeps): 05.50+q, 75.10-b

I. INTRODUCTION mined by cell-to-cell RG transformations converge to their
final value faster than those determined by cell-to-site RG

Percolation is related to many interesting problems N ansformations.

physics[1]. In recent years, there has been a number of in- In 1992, Langlands, Pichet, Pouliot, and Saint-Aubin

v_estlgatlons concerning universality an(_:l sca!lng in pe_rcola(LPPS [6] investigated site and bond percolations on sq,
tion problems. One of the research objects is the existenggyneycomb(he) and triangulartr) lattices with rectangular
probability E(L,p) [2—4], which is the probability that per- - gomains. They proposed that when the aspect ratios of sq,
colating clusters exist on a latticg with a linear dimension hc, and tr lattices ara, a\/3, anday3/2, respectively, then
L and a site or bond occupation probabilityE, was called Eq(,pc) on these lattices is a universal functioneofCardy
the spanning probability by Ziff5], and the crossing prob- derived an exact formula for critic&, as a function o& by
ability by Langlands and co-workef$,7]. A mathematical  conformal field theor§13]. The agreement between Cardy’s
definition of E;, will be given in Sec. II. formula and LPPS’s numerical results is excellent.

First, from the self-duality argument, for bond percolation  In addition to calculating the physical quantities at critical
on LXL square(sg lattices with free boundary conditions points, Hu, Chen, and Li(HLC) used the HMCSM?2,3] to
and spanning ruleR; defined by Reynolds, Stanley, and calculate finite-size scaling functions f&, and the percola-
Klein [8] (i.e., checking percolation in one direction oply tion probability P. They found that such finite-size scaling
we can directly see thd,(p.,L)=0.5 at the critical point functions depend sensitively on the boundary conditi@ns
p.=0.5 [5]. This result is consistent with the fixed-point spanning rule$14], and aspect ratios of the latti¢#5,16].
equation of the one-parameter renormalization gr@R®) Using the relative aspect ratios proposed by LPPS and a
transformation, i.eE,(L,p;)=p.. However, Ziff [5] and  small number of nonuniversal metric factdds7], Hu, Lin,
Grassbergef9] found that E,(%,p;)=0.5#p,~0.592746 and Cher{18,19 obtained universal finite-size scaling func-
for site percolation orL XL sq lattices as — . Such nu- tions forE, andP of site and bond percolation on sq, hc, and
merical result contradicts the fixed-point equation of the oneftr lattices. Finite-size corrections to the universal finite-size
parameter RG transformatidB], i.e., E,(L,p;)=pc is not  scaling functions were discussed by Aharony and Hovi
satisfied, but confirms the universality &f, at the critical [10,20.
point[5]. Hu pointed out that the fixed-point equation of the  Another geometrical quantity which is interesting and not
cell-to-cell RG transformation gives the correct critid|  well studied is the probability for the appearancengferco-
[4], and used a histogram Monte Carlo simulation methodating clustersW, [21]. Using the HMCSM, Hu found that
(HMCSM) (Refs.[2,4]) to confirm this idea. Aharony and W, has very good scaling behavior, and that the finite-size
Hovi used another RG argument to resolve the apparent coscaling functions forw, depend sensitively on boundary
tradiction[10]. Sahimi and Rassamdafibl] and Hu, Chen, conditions of the latticé21]. Using the HMCSM and non-
and Wu[12] discussed the convergence of fixed points of auniversal metric factors obtained by HL@8], Hu and Lin
series of different RG equations. Hu, Chen, and Y4d] (HL) found thatW, for site and bond percolations on finite
found that the critical points deter- sq, hc, and tr lattices fall on the same universal finite-size
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scaling functions, which show many interesting behaviors as 10
the aspect ratio of the lattice increasg®2]. In two- (a)
dimensional lattices, one might expect that there exists only — gggflf:g
a single percolating cluster at the critical pdi#8,24]. How- —— SPboc FBC
ever, HL[22] found that there is a nonzero probability that - iAo
the system has multiple percolating clusters. £ con- 06 L ggfcmFEgc
firmed this result. Using nonuniversal metric factors, Hu and o SP 50 FBC
Wang found that continuum percolation of soft and hard 7 1 SPsebBC
disks have the same universal finite-size scaling functions as o4} ——-BPscPBC
lattice percolatiorj26]. In rectangular domains, Monetti and ~~ SPscPBC
Albano [27] also studied the dependence of number of per-
colating clusters with the aspect rat® when R>1. The 02
values ofW,, at the critical point are useful for understanding
onXin quantum Hall effect$28—30. o0 ‘

In recent years, there have been both mathematical anc 015 0.35 0.40
computational studies &f,,. A recent review was given by P
Stauffer [31]. Aizenman [32] derived upper and lower 10 . -
bounds ofW,, for two-dimensional percolation at the critical (b) y
point, which was confirmed by the Monte Carlo results of y
Shchur and Kosyako{33]. Using conformal theory, Cardy 08 //
[34] proposed an exact formula for critice¥,, for large as- / 7 spicoFBG
pect ratios. 06 | J —— BPscFBC

Almost all of the results mentioned above are for two- = / St
dimensional systems. However, many interesting and impor- g / : ggfs%c;:g
tant problems are in three-dimensional space, where exacl o4| I . SP bec FBC
solutions are almost impossible, and one must use approxi- !  aeseTRe
mate methods to study the problem. Since numerical compu- ---- SPscPBC
tations require a lot of memory and computing time, progress 02 f l g0
in the numerical studies of three-dimensional percolation has
been slower than that in two-dimensional percolation. There 00 . .

are some studies of percolation in high-dimensional space 0.0 02 04 0.6 08 1.0
[35—44, but there is still no study of the universal finite-size P

scaling functions for percolation in three-dimensional space. s 1 Resuits for site percolatidP on 128 and 86 simple-
Usm_g _the HMCSM[2—4], in this paper we study the UNIVEr- cubic (so), body-centered-cubitbcd and face-centered-cubiéce)
sal finite-size scaling functions for bond and site percolation,gices and bond percolatidBP) on 8¢ and 64 sc lattices. The

on three-dimensional lattices. _ solid (dotted lines from left to right are for SP on 13@0°%) fcc,
This paper is organized as follows. The numerical techgp on 86(64% sc, SP on 12%80°) bec, and SP on 1388C°) sc
nique of histogram Monte Carlo simulation methf#3],  |attices with fbc. The dashedot-dasheglines from left to right are

and related formulas for the calculation of critical exponentsior BP on 83(64%) sc and SP on 13880%) sc lattices with pbc(a)
and finite-size scaling functions are briefly reviewed in Secg, as a function ofp. (b) P as a function of.

Il. The calculated results for the existence probabily,

the percolation probability?, and the number of percolation , ,

clustersW,, are presented in Sec. Ill. Finally, some related P(Lp)= X pUC(1—p)N"UCIN*(G))IN, (2)
theoretical problems are discussed in Sec. IV. G,CG

Il. COMPUTATIONAL ALGORITHM AND THEORETICAL whereuv(Gyp) is the number of occupied sites @,. The
EORMULATION summations in Eq91) and(2) are over all percolating sub-

) graphsG, of G, andN*(Gy) is the total number of sites in

. The HMCSM proposed by H[2,3] is useful for calculat- o hercolating cluster dB;,. In the HMCSM, we chooser
ing E, a_nd P. Here we b”eﬂy review the HMCSM for SIt® " gifferent values op. For a givenp=p;, 1<j<w, we gen-
perqolatlon[4]. The extension to bond percolati¢,19] is erateNg different subgraph&’. The data obtained from the
stralghtforward. . . . . . wNg differentG’ are then used to construct three arrays of

In site percolation on d-dimensional lattic&s of N sites, numbers of lengthN with elementsN_(v), N(v), and
each site ofG is occ'up|ed with a probab|I|t>p, where 0 Npp(v), O<v=<N, which are, respective‘I)y, the total numbers
=p=1. A cluster which extends from one side Gfto the ¢ percolating subgraphs with occupied sites, nonpercolat-
oppos_|te side of5 is a percolat[ng cluster. A subgraph yvh|ch ing subgraphs with occupied sites, and the sum Mt (G)
contains at least one percolating cluster is a percolating su Sver percolating subgraphs with 6ccupied sites. Aftepr a

graph and denoted b, . Then we have the definitions large number of simulations, the existence probabikity
, , and the percolation probabilit? at any value of the site
Ep(L.p)= > p*C(1-p)N (), (1) occupation probabilityp can then be calculated approxi-

G,CG mately from the equation2—4]
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TABLE 1. Critical points and exponents for site and bond percolation on simple-dagic body-
centered-cubi¢bco), and face-centered-cubitcc) lattices. Herd.; andL, respresent linear dimensions of
lattices in cell-to-cell RG transformations, and only lattices with free boundary conditions are considered.
The data inside parentheses are included for comparison with our results. The criticalppdimtsite and
bond percolation on sc lattice are taken from RE3$] and[43], respectivelyp, for site percolation on bcc
and fcc lattices are taken from R¢87]; y, andyy, inside parentheses are calculated from the data of Ref.

[43].
Percolation site site site bond
Lattice e bcc fcc sc
Li—Ly 128-80 128-80 128-80 106-80
Pc 0.3116:0.0001 0.245%0.0001 0.19920.0001 0.2488F 0.000 06
(0.311605-0.000 010) (0.24640.0007) (0.19980.0006) (0.248 812£0.000 000 5)
Vi 1.12+0.02 1.12:0.03 1.15-0.02 1.13:0.03
(1.123+0.025)
Yh 2.49+0.01 2.46-0.01 247 0.01 2.52-0.02
(2.523+0.004)
% N__ Np() | 7P’ P(Ly,po)LS
Eo(L,p)=2 p'(1-p"°Cl——~ v @ nl—5 In—————
P = Np(v) +N¢(v) 1 R _po_Plzpit:
N yt_,,_ InLl S InLl |
1 Npo(v) L, L,
PILP)= {2, PP Ol N ) 2 2
v=0 . . .
P f (4 Let us consider a system of linear dimenslomear the

critical point. According to the theory of finite-size scaling
[1,45,44, if the dependence of a physical quant@®y of a
whereCN=N!/(N-v)!v!. . : .
v . .. th t hich h t
This method was generalized to evaluate the probabilit ermodynamic system on a parametiewhich vanishes a

) ¥he critical pointt=0, is of the formQ(t)~t? near the criti-
of the appearance of p_ercolatlng c_Iusters\Nn [2.1’22' A cal point, then the corresponding quali@®(t,L) is of the
percolating subgraph with percolating clusters is denoted

) . form
by G,,. Now we have the definition
Q(t,L)~L ™R (tLYy), 9
Wy(L,p)= > p*C(1—p)N~v(Cn), (5)  wherey,(=v"1) is the thermal scaling power, is the cor-
G,CG relation length exponent arfé(x) (x=tLYt) is the finite-size

scaling function. It follows from Eq(9) that the scaled data
By the same proceduriy,, can be calculated approximately Q(t,L)L®" for different values of. andt are described by a

from the equation single functionF(x).
Although different systems with the same spatial dimen-
N N, (1) sionality and the same symmetry properties have the same
W, (L,p)=>, p’(1—p)N-vCN bn , (6)  setof critical exponents, it is widely believed that different
" v=0 Np(v)+N¢(v) lattices have different finite-size scaling functions. In 1984,

Privman and Fishdrl7] proposed the concept of a universal
whereN,(v) is the number of percolating subgraphs with finite-size scaling function and nonuniversal metric factors.
percolating clusters and occupied sites. It is obvious that In particular, they proposed that, near0, the singular part
Ep=27_1W, andNy(v) =Z7_1Nyn(v). of the free energy can be written as

The percolation renormalization group transformation
from lattice G, of linear dimensiori ; to lattice G, of linear
dimensionL,, whereL;>L,, is given by the equation

fo(t,L)~L9Y(CtLYy), (10)

whered is the spatial dimensionality of the lattic¥, is a
universal scaling function, an@ is a nonuniversal metric
Ep(L2,p")=Ep(L1,p), (M factor.

Now we consider universal finite-size scaling functions
which gives the renormalized site probabiliy as a func- for the existence probabiliti,, and the percolation probabil-
tion of p. The fixed point of Eq(7) gives the critical point ity P. In the limit L—, E, approaches the step function
p.. The thermal scaling powsr and the field scaling power O (p—p,); if we write E,~(p—p)® for p>p,, then the
Yh, Which is equal to the fractal dimensidh of the perco- critical exponent is 0. P(p,L) is the fraction of lattice sites
lating cluster afp., can be obtained from the equations in the percolating cluster, and is the order parameter of the
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system. In the limit —, P~ (p—p.)? for p>p.. Accord-

ing to Eq. (9), we may write E,=F,(2) and P(z)LA"
=F,(2), wherez=(p—p.)L* is a scaling variable ang,
and F, are finite-size scaling functions. To find universal
finite-size scaling functions, we introduce the nonuniversal
metric factorsD,, D,, and D3, as in the paper by HLC

PRE 58

1.0

(@)

—— SPscFBC
RS SP bcc FBC
---- SPfcc FBC
—-— BPscFBC
—— SPscPBC
—-— BPscPBC

[18,19 and considerE, as a function ofx;=D;z and
D3PLA as a function ok,=D,z. The universalfinite-size
scaling functions forE, and P are denoted byr and S, 04|
respectively.

Il. NUMERICAL RESULTS 02 r

Typical calculated results d&, andP for site percolation
on simple-cubic(sc), body-centered-cubi¢bcc), and face- 40
centered-cubicfcc) lattices, and bond percolation on sc lat-
tices with both free boundary conditiofEBC’s), and peri- 5.0 , T - ,
odic boundary condition$PBE’s) are shown in Figs. (&) (b) P
and 1b), respectively. Our periodic boundary conditions are P
periodic in three directions, similar to the case of planar lat-  *°[ — A o
tices considered by Hu and co-workéds3,47. ---- SPfoc FBC e

Since there are no exact solutions fay, y,, andyy, for a0l operee e
percolation on three-dimensional lattices, we use(Egand —-— BPscPBC S
(8) to obtain approximate numerical values. For site perco- ‘
lation, we usel ;=128 andL,=80. For bond percolation, 20
we usel ;=100 andL,=80, which are larger than those
used in Fig. 1, so that we may obtain accurpte y;, and
Vn- The calculated results are shown in Table I, in which
results obtained by other metho®5,37,43 are also shown
for comparison. Data shown in Table | support the idea that
critical exponents for percolation on lattices of the same di- 20
mensionality are universal].

In [35], Ziff and Stell found that for site percolation on a  FIG. 2. Scaling functions for site percolatig8P on sc, bcc,
sc lattice the critical point ip.(sc)=0.311 605-0.000 010. and fcc lattices, and bond percolatit®P) on sc lattices. The data
In a very recent papef43], Lorenz and Ziff had a very are taken from Fig. 1(@) F as a function ofz=(p—p.)L*. The
precise determination of critical exponents for percolation orslopes of the soliddotted lines atz=0 from small to large are for
three-dimensional lattices. They found that the Fisher expoSP on 128(80°) sc, SP on 12§80°) bce, SP on 12%80°) fec,
nentr is 2.189+0.002 and the scaling function exponent and BP on 8%64%) sc lattices with fbc. The slopes of the dashed
is 0.445+0.01. From these data and scaling relatifiswe  (dot-dasheyl lines atz=0 from small to Iarge are for SP on
find y,=1/v=1.123+0.025 andy, =D =2.523+0.004. For 1283(_803) sc and BP on 8l{64% sc lattices with pbe(b) S as a
site percolation on sc lattices, we ubk=55 000 forL, function of z=(p—p.)L*t. The values of the soll(gaiotted lines at
~128, andNe=T0000 orL=00, andw =345 for boh 3, 1% 519 958 8% 1 59 o0 MO
cases to obtainp.(sc)=0.3116+=0.0001, y,=1.12+0.02, ) ' ' )

_ . with fbc. The values of the dashédot-dashefllines atz=0 from
and y,=2.49+0.01, which are very close to the result of small to large are for SP on 13®(°) sc and BP on 8464) sc
Refs.[35] and[43]. In 1995, Hu[42] used the same proce- lattices with pbc
dure to calculate the same qualities by using=80 and '
L,=64. The values found here are closer to the results otmiversality of criticaIEp for the same boundary conditions
Refs.[35] and[43]. This may be related to the fact that now [44], and provides a good basis to study universal finite-size
we use larger lattices, and the finite-size correction isscaling functionUFSSF's.
smaller. To study UFSSF's, we used the application progreugr

Using the data of Fig. 1 ang,=0.3116, 0.2459, 0.1992, to fit data of Figs. 2a) and 2b) as polynomials inz. The
and 0.2488 for site perco]a’[ion on sc, bCC, and fcc |attice5(,:oefﬁCientS of the linear terms fﬁ(Z) are used to calculate
and bond percolation on a sc lattice, respectively, gpnd D1, and the coefficients of the constant and linear terms for
=1.123 andy,=2.523, we plotE,, and PLA as a function S(z) are used to calculate; andD,, respectively. We de-
of z=(p—p)L"t in Figs. 3@ and 2b), respectively, in finedD;, D, andD3 to be 1 for site percolation on sc lat-
which the scaling functions are denoted Byz) and S(z), tices, and used this definition to calcul&le, D,, andD 3 for
respectively. The 12 curves of Figs(al and Xb) collapse other models. The calculated results are listed in Table II,
nicely into six curves in Figs. (@) and 2b), i.e., they have where the values for periodic boundary conditions are repre-
good finite-size scaling behavior. It is of interest to note thasented byD;, D,, and D3. We then plotE,(p,L) as a
curves of different models with the same boundary condifunction of x=D;(p—p¢)LY'=D;z in Fig. 3@, and
tions go through the same point a&0. This verifies the D3P(p,L)LAt as a function ofx=D,(p—p.)LY*=D,z in

1.0 20 3.0 4.0

S(2)

10
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TABLE Il. Nonuniversal metric factors for site and bond perco- 1.0 ' ' y /—ﬁ
lation on simple-cubiasc), body-centered-cubi¢bco), and face- (@)
centered-cubicfcc) lattices. The values ofv and Ng used in the
simulations are also showw, N, D4, D5, andDj are for lattices 08 r —— SPscFBC
with free boundary conditionsy’, N, D, D3, andDj are for T e
lattices with periodic boundary conditions. —-— BPscFBC
06 | —— SPscPBC
- —-— BPscPBC
Percolation  site site site bond E
Lattice sc bcc fcc sc 041
w 345 345 345 345
Ng 55 000 30 000 20 000 25 000 02 r
D, 1 1.004-0.012 1.156:0.017 1.6710.025
D, 1 1.0370.037 1.1940.045 1.6780.038 00 . . . .
D, 1 1.283+0.029 1.4850.036 0.50%0.032 4.0 30 20 1.0 0)-(0 10 20 3.0 4.0
w 345 - - 345 5.0 T T
Ng 30000 - - 15 000 (b)
D; 1 - - 1.701£0.031 ‘o
) 0 r —— SPscFBC
D) 1 - - 1.699+0.043 oA
D; 1 - - 0.502+0.020 ---- SPfec FBC
—-— BPscFBC
30 —— SPscPBC
= —-— BPscPBC
Fig. 3(b). Figures 8a) and 3b) show thatE, andP possess &
well-defined UFSSF'’s, which are denoted Bx) and S(x) 20
for E, and P, respectively.
It is of interest to note that for each column in Table II,
D, is consistent withD, within numerical uncertainty, and 10r
for bond percolation on sc lattices the valuedqf D,, and
D; for free boundary conditions are consistent with those for oo _/ . .
periodic boundary conditions. In other words, as in the case 20 -1.0 0.0 1.0 20 3.0 4.0

of percolation on planar lattic§48,19, only a small number
of nonuniversal scaling metric factors are needed to reach the FIG. 3. (a) The calculatedE,, for the site percolation on sc, bee,
universal scaling functions shown in FiggaBand 3b). We  and fcc lattices and bond percolatlon on sc lattices, where
find that E,(p.,L)=F(0) of Fig. 3@ for free boundary =D;(p—pc)L’*=D,z. The scaling function is(x). The lower
conditions is equal to 0.2650.005[44], which is quite dif-  (uppe) curves are for fre¢periodio boundary conditions(b) The
ferent from the resulE,(p.,)~0.42 obtained in Re{39], calculatedD ;P LAt for the site percolation on sc, bee, and fec lat-
but is consistent with criticalE,, for continuum percolation tices and bond percolation on sc lattices as a functior, afhere
of soft spheres and hard spheres in three-dimensional spa&& D2(P—pc)LY*=Dyz. The scaling function isS(x). The lower
with free boundary conditionf48]. For periodic boundary (Uppey curves are for fre¢periodio boundary conditions.
conditions, we find thaE,(p.,L)=F(0)=0.924+0.005.

To study the scaling behavior &¥,,, we use Eq(8) to
evaluate W,, for site percolation on 128128x64,100
X 100X 50,80< 80X 40, and 64X 64X 32 sc lattices with free
boundary conditions. The calculated results as a function o |

. o v >
p and as a function af=(p-—p)L* are shown in Figs. @ scaling functionU,(x). Sen[25] found that the probability

and 4b), respectively, whereW,=1—E,. Figure 4b) . . :
shows thaWW, has a reasonably good scaling behavior. How-Of getting more than one percolating clusterpgtfor site

o . ercolation on sc lattices is about 0.014, which is quite con-
ever, it is not as good as that found for bond percolation Orgistent with our resultt ,(0)~0.013, andU,(0) is vanish-
square lattice$22]. We consider that there are several pos-; ing small forn>2.
sible reasong1) In the present paper, we do not have exact
Pe, Vi, andyy,, while in Ref.[22] there were exaqb., Y;,
andyy, for bond percolation on sq lattice®) The finite-size V. DISCUSSION
scaling correction for three-dimensional systems is larger In Ref.[4], Hu found that finite-size scaling functions for
than that in Ref[22], thus we may need to do simulations on percolation on square lattices depend sensitively on bound-
larger lattices in order to obtain better scaling behavior.  ary conditions of the lattice. In particular, a&=0, F=0.50

To study the UFSSF forW,, we calculated for free boundary conditiondbc), andF =0.93 for periodic
W,(L4,L,,L5,p) for site percolation on an 8080xX80 sc  boundary conditiongpbo). In the present paper, we find that

lattice, and for bond percolation on aX$84x 64 sc lattice
with free boundary conditions. The calculatdg as a func-
tion of x=D;(p—p) LYt are shown in Fig. 5, wherB, is
ken from the last column of Table II. Figure 5 shows that
| calculated results for eaah fall on the same universal
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1.0 e 1.0
(@)
08 —— 128X128X64 1 08 —— SPscFBC
------------ 100X100X50 e BP 8C FBC
---- 80X80X40
—-— 64X64X32
06 | 06 |
e €3
3 >
04 04
02| 02
0.0 == - 0.0 . !
0.25 0.35 0.40 -4.0 3.0 3.0 4.0
1.0
b FIG. 5. The universal finite-size scaling functith(x), for W,
(b) on theL® system. It is plotted as a function of scaling variakle
08 =D;(p—p)L*, whereD, is taken from Table Il. The solid and
dot-dashed lines respresent, respectively, site and bond percolation
L i2BX128X64 on sc lattices with free boundary conditions. Here only results for
0.6 [ oo 100X100X50 n=0, 1, and 2 are shown. The monotonic decreasingreasing
) Yo function is forFo(F,). The bell shaped curve is fdf,.
[T
04 . . . . .
dimensional lattices, the difference of critida) for pbc and
fbc would be larger than 0.659.
02| When we used the histogram Monte Carlo renormaliza-
tion group method to calculate thermal scaling poweand
>C\\ fractal dimensiorD for percolation on planar latticd,4],
00, =0T 2o g0 b o 20 ar o we found that lattices of medium size can give very accurate
z Yi, and we should use much larger lattices in order to obtain

a D of comparable accuracy. We have a similar experience
FIG. 4. (@ W,(L;,L,,L5,p) for site percolation with free when we calculatg; andD for three-dimensional lattices. If
boundary  conditons on  128128x64, 100<100x50, we increase the lattice sizes, we can increase the accuracy of
80X 80x 40, and 64 64x 32 sc lattices, which are represented by D shown in Table I.
solid, dotted, dashed, and dot-dashed lines, respectidelyThe In Refs.[18,22, we found universal finite-size scaling
data of(a) are plotted as a function a=(p—pc)L"t. The scaling  functions forE,, P, andW, of bond and site percolation on
functions forW, are denoted by ,(z). The monotonic decreasing planar lattices. In the present paper, we find that the results

function is forFo. The S shaped curve is féf,. The bell shaped  for percolation on planar lattices may be extended to perco-
curves from top to bottom are fdr,(z), with n being 2, 3, 4 and 5,  |ation on three-dimensional lattices.

respectively.

finite-size scaling functions for percolation on three-
dimensional lattices, e.gr(x) of Fig. 3(a), also depend sen-
sitively on boundary conditions of the lattice. In particular, at We would like to thank J. G. Dushoff for a critical read-
x=0, F=0.265-0.005 for fboc andF=0.924+0.005 for ing of the paper. This work was supported by the National
pbc. It is of interest to note that as the spatial dimensionalityScience Council of the Republic of Chif@aiwan under
increases, the difference between the value§ @it x=0, Grant Nos. NSC 86-2112-M-001-001 and NCHC-86-02-008,
e.g. criticalE,, for pbc and fbc also increases. If this trend the Computing Center of Academia Sini€eaipe), and the
continues, we may predict that for four- and higher-National Center for High-Performance Computifigiwan.
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