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Universal finite-size scaling functions for percolation on three-dimensional lattices

Chai-Yu Lin
Institute of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan

Chin-Kun Hu
Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
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Using a histogram Monte Carlo simulation method~HMCSM!, Hu, Lin, and Chen found that bond and site
percolation models on planar lattices have universal finite-size scaling functions for the existence probability
Ep , the percolation probabilityP, and the probabilityWn for the appearance ofn percolating clusters in these
models. In this paper we extend above study to percolation on three-dimensional lattices with various linear
dimensionsL. Using the HMCSM, we calculate the existence probabilityEp and the percolation probabilityP
for site and bond percolation on a simple-cubic~sc! lattice, and site percolation on body-centered-cubic and
face-centered-cubic lattices; each lattice has the same linear dimension in three dimensions. Using the data of
Ep andP in a percolation renormalization group method, we find that the critical exponents obtained are quite
consistent with the universality of critical exponents. Using a small number of nonuniversal metric factors, we
find thatEp andP have universal finite-size scaling functions. This implies that the criticalEp is a universal
quantity, which is 0.26560.005 for free boundary conditions and 0.92460.005 for periodic boundary condi-
tions. We also find thatWn for site and bond percolation on sc lattices have universal finite-size scaling
functions.@S1063-651X~98!09008-4#

PACS number~s!: 05.50.1q, 75.10.2b
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I. INTRODUCTION

Percolation is related to many interesting problems
physics@1#. In recent years, there has been a number of
vestigations concerning universality and scaling in perco
tion problems. One of the research objects is the existe
probabilityEp(L,p) @2–4#, which is the probability that per
colating clusters exist on a latticeG with a linear dimension
L and a site or bond occupation probabilityp. Ep was called
the spanning probability by Ziff@5#, and the crossing prob
ability by Langlands and co-workers@6,7#. A mathematical
definition of Ep will be given in Sec. II.

First, from the self-duality argument, for bond percolati
on L3L square~sq! lattices with free boundary condition
and spanning ruleR1 defined by Reynolds, Stanley, an
Klein @8# ~i.e., checking percolation in one direction only!,
we can directly see thatEp(pc ,L)50.5 at the critical point
pc50.5 @5#. This result is consistent with the fixed-poin
equation of the one-parameter renormalization group~RG!
transformation, i.e.Ep(L,pc)5pc . However, Ziff @5# and
Grassberger@9# found that Ep(`,pc)50.5Þpc'0.592746
for site percolation onL3L sq lattices asL→`. Such nu-
merical result contradicts the fixed-point equation of the o
parameter RG transformation@5#, i.e., Ep(L,pc)5pc is not
satisfied, but confirms the universality ofEp at the critical
point @5#. Hu pointed out that the fixed-point equation of th
cell-to-cell RG transformation gives the correct criticalEp
@4#, and used a histogram Monte Carlo simulation meth
~HMCSM! ~Refs. @2,4#! to confirm this idea. Aharony and
Hovi used another RG argument to resolve the apparent
tradiction @10#. Sahimi and Rassamdana@11# and Hu, Chen,
and Wu@12# discussed the convergence of fixed points o
series of different RG equations. Hu, Chen, and Wu@12#
found that the critical points deter-
PRE 581063-651X/98/58~2!/1521~7!/$15.00
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mined by cell-to-cell RG transformations converge to th
final value faster than those determined by cell-to-site
transformations.

In 1992, Langlands, Pichet, Pouliot, and Saint-Aub
~LPPS! @6# investigated site and bond percolations on
honeycomb~hc! and triangular~tr! lattices with rectangular
domains. They proposed that when the aspect ratios of
hc, and tr lattices area, aA3, andaA3/2, respectively, then
Ep(`,pc) on these lattices is a universal function ofa. Cardy
derived an exact formula for criticalEp as a function ofa by
conformal field theory@13#. The agreement between Cardy
formula and LPPS’s numerical results is excellent.

In addition to calculating the physical quantities at critic
points, Hu, Chen, and Lin~HLC! used the HMCSM@2,3# to
calculate finite-size scaling functions forEp and the percola-
tion probability P. They found that such finite-size scalin
functions depend sensitively on the boundary conditions@4#,
spanning rules@14#, and aspect ratios of the lattice@15,16#.
Using the relative aspect ratios proposed by LPPS an
small number of nonuniversal metric factors@17#, Hu, Lin,
and Chen@18,19# obtained universal finite-size scaling fun
tions forEp andP of site and bond percolation on sq, hc, a
tr lattices. Finite-size corrections to the universal finite-s
scaling functions were discussed by Aharony and H
@10,20#.

Another geometrical quantity which is interesting and n
well studied is the probability for the appearance ofn perco-
lating clusters,Wn @21#. Using the HMCSM, Hu found tha
Wn has very good scaling behavior, and that the finite-s
scaling functions forWn depend sensitively on boundar
conditions of the lattice@21#. Using the HMCSM and non-
universal metric factors obtained by HLC@18#, Hu and Lin
~HL! found thatWn for site and bond percolations on finit
sq, hc, and tr lattices fall on the same universal finite-s
1521 © 1998 The American Physical Society
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scaling functions, which show many interesting behaviors
the aspect ratio of the lattice increases@22#. In two-
dimensional lattices, one might expect that there exists o
a single percolating cluster at the critical point@23,24#. How-
ever, HL @22# found that there is a nonzero probability th
the system has multiple percolating clusters. Sen@25# con-
firmed this result. Using nonuniversal metric factors, Hu a
Wang found that continuum percolation of soft and ha
disks have the same universal finite-size scaling function
lattice percolation@26#. In rectangular domains, Monetti an
Albano @27# also studied the dependence of number of p
colating clusters with the aspect ratioR when R@1. The
values ofWn at the critical point are useful for understandin
sxx

max in quantum Hall effects@28–30#.
In recent years, there have been both mathematical

computational studies ofWn . A recent review was given by
Stauffer @31#. Aizenman @32# derived upper and lowe
bounds ofWn for two-dimensional percolation at the critica
point, which was confirmed by the Monte Carlo results
Shchur and Kosyakov@33#. Using conformal theory, Cardy
@34# proposed an exact formula for criticalWn for large as-
pect ratios.

Almost all of the results mentioned above are for tw
dimensional systems. However, many interesting and imp
tant problems are in three-dimensional space, where e
solutions are almost impossible, and one must use appr
mate methods to study the problem. Since numerical com
tations require a lot of memory and computing time, progr
in the numerical studies of three-dimensional percolation
been slower than that in two-dimensional percolation. Th
are some studies of percolation in high-dimensional sp
@35–44#, but there is still no study of the universal finite-siz
scaling functions for percolation in three-dimensional spa
Using the HMCSM@2–4#, in this paper we study the univer
sal finite-size scaling functions for bond and site percolat
on three-dimensional lattices.

This paper is organized as follows. The numerical te
nique of histogram Monte Carlo simulation method@2,3#,
and related formulas for the calculation of critical expone
and finite-size scaling functions are briefly reviewed in S
II. The calculated results for the existence probabilityEp ,
the percolation probabilityP, and the number of percolatio
clustersWn are presented in Sec. III. Finally, some relat
theoretical problems are discussed in Sec. IV.

II. COMPUTATIONAL ALGORITHM AND THEORETICAL
FORMULATION

The HMCSM proposed by Hu@2,3# is useful for calculat-
ing Ep and P. Here we briefly review the HMCSM for site
percolation@4#. The extension to bond percolation@2,15# is
straightforward.

In site percolation on ad-dimensional latticeG of N sites,
each site ofG is occupied with a probabilityp, where 0
<p<1. A cluster which extends from one side ofG to the
opposite side ofG is a percolating cluster. A subgraph whic
contains at least one percolating cluster is a percolating
graph and denoted byGp8 . Then we have the definitions

Ep~L,p!5 (
Gp8#G

pv~Gp8!~12p!N2v~Gp8!, ~1!
s
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P~L,p!5 (
Gp8#G

pv~Gp8!~12p!N2v~Gp8!N* ~Gp8!/N, ~2!

where v(Gp8) is the number of occupied sites inGp8 . The
summations in Eqs.~1! and~2! are over all percolating sub
graphsGp8 of G, andN* (Gp8) is the total number of sites in
the percolating cluster ofGp8 . In the HMCSM, we choosew
different values ofp. For a givenp5pj , 1< j <w, we gen-
erateNR different subgraphsG8. The data obtained from the
wNR different G8 are then used to construct three arrays
numbers of lengthN with elementsNp(v), Nf(v), and
Npp(v), 0<v<N, which are, respectively, the total numbe
of percolating subgraphs withv occupied sites, nonpercola
ing subgraphs withv occupied sites, and the sum ofN* (Gp8)
over percolating subgraphs withv occupied sites. After a
large number of simulations, the existence probabilityEp
and the percolation probabilityP at any value of the site
occupation probabilityp can then be calculated approx
mately from the equations@2–4#

FIG. 1. Results for site percolation~SP! on 1283 and 803 simple-
cubic ~sc!, body-centered-cubic~bcc! and face-centered-cubic~fcc!
lattices, and bond percolation~BP! on 803 and 643 sc lattices. The
solid ~dotted! lines from left to right are for SP on 1283(803) fcc,
BP on 803(643) sc, SP on 1283(803) bcc, and SP on 1283(803) sc
lattices with fbc. The dashed~dot-dashed! lines from left to right are
for BP on 803(643) sc and SP on 1283(803) sc lattices with pbc.~a!
Ep as a function ofp. ~b! P as a function ofp.
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TABLE I. Critical points and exponents for site and bond percolation on simple-cubic~sc!, body-
centered-cubic~bcc!, and face-centered-cubic~fcc! lattices. HereL1 andL2 respresent linear dimensions o
lattices in cell-to-cell RG transformations, and only lattices with free boundary conditions are consi
The data inside parentheses are included for comparison with our results. The critical pointspc for site and
bond percolation on sc lattice are taken from Refs.@35# and@43#, respectively;pc for site percolation on bcc
and fcc lattices are taken from Ref.@37#; yt andyh inside parentheses are calculated from the data of R
@43#.

Percolation site site site bond

Lattice sc bcc fcc sc

L1↔L2 128↔80 128↔80 128↔80 100↔80

pc 0.311660.0001 0.245960.0001 0.199260.0001 0.2488760.000 06
(0.31160560.000 010) (0.246460.0007) (0.199860.0006) (0.248 812 660.000 000 5)

yt 1.1260.02 1.1260.03 1.1560.02 1.1360.03
(1.12360.025)

yh 2.4960.01 2.4660.01 2.4760.01 2.5260.02
(2.52360.004)
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Ep~L,p!5 (
v50

N

pv~12p!N2vCv
N Np~v !

Np~v !1Nf~v !
, ~3!

P~L,p!5
1

N(
v50

N

pv~12p!N2vCv
N Npp~v !

Np~v !1Nf~v !
,

~4!

whereCv
N5N!/(N2v)!v!.

This method was generalized to evaluate the probab
of the appearance ofn percolating clusters,Wn @21,22#. A
percolating subgraph withn percolating clusters is denote
by Gn8 . Now we have the definition

Wn~L,p!5 (
Gn8#G

pv~Gn8!~12p!N2v~Gn8!. ~5!

By the same procedure,Wn can be calculated approximate
from the equation

Wn~L,p!5 (
v50

N

pv~12p!N2vCv
N Npn~v !

Np~v !1Nf~v !
, ~6!

whereNpn(v) is the number of percolating subgraphs withn
percolating clusters andv occupied sites. It is obvious tha
Ep5(n51

` Wn andNp(v)5(n51
` Npn(v).

The percolation renormalization group transformati
from latticeG1 of linear dimensionL1 to latticeG2 of linear
dimensionL2, whereL1.L2, is given by the equation

Ep~L2 ,p8!5Ep~L1 ,p!, ~7!

which gives the renormalized site probabilityp8 as a func-
tion of p. The fixed point of Eq.~7! gives the critical point
pc . The thermal scaling poweryt and the field scaling powe
yh , which is equal to the fractal dimensionD of the perco-
lating cluster atpc , can be obtained from the equations
y

yt5
1

n
5

lnS ]p8

]p D
pc

ln
L1

L2

, yh5D5

ln
P~L1 ,pc!L1

d

P~L2 ,pc!L2
d

ln
L1

L2

. ~8!

Let us consider a system of linear dimensionL near the
critical point. According to the theory of finite-size scalin
@1,45,46#, if the dependence of a physical quantityQ of a
thermodynamic system on a parametert, which vanishes at
the critical pointt50, is of the formQ(t);ta near the criti-
cal point, then the corresponding qualityQ(t,L) is of the
form

Q~ t,L !;L2aytF~ tLyt!, ~9!

whereyt(5n21) is the thermal scaling power,n is the cor-
relation length exponent andF(x)(x5tLyt) is the finite-size
scaling function. It follows from Eq.~9! that the scaled data
Q(t,L)Layt for different values ofL andt are described by a
single functionF(x).

Although different systems with the same spatial dime
sionality and the same symmetry properties have the sa
set of critical exponents, it is widely believed that differen
lattices have different finite-size scaling functions. In 198
Privman and Fisher@17# proposed the concept of a universa
finite-size scaling function and nonuniversal metric factor
In particular, they proposed that, neart50, the singular part
of the free energy can be written as

f s~ t,L !;L2dY~CtLyt!, ~10!

whered is the spatial dimensionality of the lattice,Y is a
universal scaling function, andC is a nonuniversal metric
factor.

Now we consider universal finite-size scaling function
for the existence probabilityEp and the percolation probabil-
ity P. In the limit L→`, Ep approaches the step function
Q(p2pc); if we write Ep;(p2pc)

a for p.pc , then the
critical exponenta is 0. P(p,L) is the fraction of lattice sites
in the percolating cluster, and is the order parameter of
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system. In the limitL→`, P;(p2pc)
b for p.pc . Accord-

ing to Eq. ~9!, we may write Ep5F1(z) and P(z)Lbyt

5F2(z), wherez5(p2pc)L
yt is a scaling variable andF1

and F2 are finite-size scaling functions. To find univers
finite-size scaling functions, we introduce the nonuniver
metric factorsD1, D2, and D3, as in the paper by HLC
@18,19# and considerEp as a function ofx15D1z and
D3PLbyt as a function ofx25D2z. Theuniversalfinite-size
scaling functions forEp and P are denoted byF and S,
respectively.

III. NUMERICAL RESULTS

Typical calculated results ofEp andP for site percolation
on simple-cubic~sc!, body-centered-cubic~bcc!, and face-
centered-cubic~fcc! lattices, and bond percolation on sc la
tices with both free boundary conditions~FBC’s!, and peri-
odic boundary conditions~PBE’s! are shown in Figs. 1~a!
and 1~b!, respectively. Our periodic boundary conditions a
periodic in three directions, similar to the case of planar
tices considered by Hu and co-workers@18,47#.

Since there are no exact solutions forpc , yt , andyh for
percolation on three-dimensional lattices, we use Eq.~7! and
~8! to obtain approximate numerical values. For site per
lation, we useL15128 andL2580. For bond percolation
we useL15100 andL2580, which are larger than thos
used in Fig. 1, so that we may obtain accuratepc , yt , and
yh . The calculated results are shown in Table I, in wh
results obtained by other methods@35,37,43# are also shown
for comparison. Data shown in Table I support the idea t
critical exponents for percolation on lattices of the same
mensionality are universal@1#.

In @35#, Ziff and Stell found that for site percolation on
sc lattice the critical point ispc(sc)50.311 60560.000 010.
In a very recent paper@43#, Lorenz and Ziff had a very
precise determination of critical exponents for percolation
three-dimensional lattices. They found that the Fisher ex
nentt is 2.18960.002 and the scaling function exponents
is 0.44560.01. From these data and scaling relations@1#, we
find yt51/n51.12360.025 andyh5D52.52360.004. For
site percolation on sc lattices, we useNR555 000 for L1
5128, andNR570 000 for L2580, andw5345 for both
cases to obtainpc(sc)50.311660.0001, yt51.1260.02,
and yh52.4960.01, which are very close to the result
Refs. @35# and @43#. In 1995, Hu@42# used the same proce
dure to calculate the same qualities by usingL1580 and
L2564. The values found here are closer to the results
Refs.@35# and@43#. This may be related to the fact that no
we use larger lattices, and the finite-size correction
smaller.

Using the data of Fig. 1 andpc50.3116, 0.2459, 0.1992
and 0.2488 for site percolation on sc, bcc, and fcc lattic
and bond percolation on a sc lattice, respectively, andyt
51.123 andyh52.523, we plotEp andPLbyt as a function
of z5(p2pc)L

yt in Figs. 2~a! and 2~b!, respectively, in
which the scaling functions are denoted byF(z) and S(z),
respectively. The 12 curves of Figs. 1~a! and 1~b! collapse
nicely into six curves in Figs. 2~a! and 2~b!, i.e., they have
good finite-size scaling behavior. It is of interest to note t
curves of different models with the same boundary con
tions go through the same point atz50. This verifies the
l
l
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s
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t
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universality of criticalEp for the same boundary condition
@44#, and provides a good basis to study universal finite-s
scaling functions~UFSSF’s!.

To study UFSSF’s, we used the application programxvgr
to fit data of Figs. 2~a! and 2~b! as polynomials inz. The
coefficients of the linear terms forF(z) are used to calculate
D1, and the coefficients of the constant and linear terms
S(z) are used to calculateD3 andD2, respectively. We de-
fined D1, D2 and D3 to be 1 for site percolation on sc la
tices, and used this definition to calculateD1, D2, andD3 for
other models. The calculated results are listed in Table
where the values for periodic boundary conditions are rep
sented byD18 , D28, and D38 . We then plotEp(p,L) as a
function of x5D1(p2pc)L

yt5D1z in Fig. 3~a!, and
D3P(p,L)Lbyt as a function ofx5D2(p2pc)L

yt5D2z in

FIG. 2. Scaling functions for site percolation~SP! on sc, bcc,
and fcc lattices, and bond percolation~BP! on sc lattices. The data
are taken from Fig. 1.~a! F as a function ofz5(p2pc)L

yt. The
slopes of the solid~dotted! lines atz50 from small to large are for
SP on 1283(803) sc, SP on 1283(803) bcc, SP on 1283(803) fcc,
and BP on 803(643) sc lattices with fbc. The slopes of the dash
~dot-dashed! lines at z50 from small to large are for SP on
1283(803) sc and BP on 803(643) sc lattices with pbc.~b! S as a
function of z5(p2pc)L

yt. The values of the solid~dotted! lines at
z50 from small to large are for SP on 1283(803) fcc, SP on
1283(803) bcc, SP on 1283(803) sc, and BP on 803(643) sc lattices
with fbc. The values of the dashed~dot-dashed! lines atz50 from
small to large are for SP on 1283(803) sc and BP on 803(643) sc
lattices with pbc.
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Fig. 3~b!. Figures 3~a! and 3~b! show thatEp andP possess
well-defined UFSSF’s, which are denoted byF(x) andS(x)
for Ep andP, respectively.

It is of interest to note that for each column in Table
D1 is consistent withD2 within numerical uncertainty, and
for bond percolation on sc lattices the values ofD1, D2, and
D3 for free boundary conditions are consistent with those
periodic boundary conditions. In other words, as in the c
of percolation on planar lattices@18,19#, only a small number
of nonuniversal scaling metric factors are needed to reach
universal scaling functions shown in Figs. 3~a! and 3~b!. We
find that Ep(pc ,L)5F(0) of Fig. 3~a! for free boundary
conditions is equal to 0.26560.005@44#, which is quite dif-
ferent from the resultEp(pc ,`)'0.42 obtained in Ref.@39#,
but is consistent with criticalEp for continuum percolation
of soft spheres and hard spheres in three-dimensional s
with free boundary conditions@48#. For periodic boundary
conditions, we find thatEp(pc ,L)5F(0)50.92460.005.

To study the scaling behavior ofWn , we use Eq.~8! to
evaluate Wn for site percolation on 1283128364,100
3100350,80380340, and 64364332 sc lattices with free
boundary conditions. The calculated results as a function
p and as a function ofz5(p2pc)L

yt are shown in Figs. 4~a!
and 4~b!, respectively, whereW0512Ep . Figure 4~b!
shows thatWn has a reasonably good scaling behavior. Ho
ever, it is not as good as that found for bond percolation
square lattices@22#. We consider that there are several po
sible reasons.~1! In the present paper, we do not have ex
pc , yt, andyh , while in Ref.@22# there were exactpc , yt ,
andyh for bond percolation on sq lattices.~2! The finite-size
scaling correction for three-dimensional systems is lar
than that in Ref.@22#, thus we may need to do simulations o
larger lattices in order to obtain better scaling behavior.

To study the UFSSF for Wn , we calculated
Wn(L1 ,L2 ,L3 ,p) for site percolation on an 80380380 sc

TABLE II. Nonuniversal metric factors for site and bond perc
lation on simple-cubic~sc!, body-centered-cubic~bcc!, and face-
centered-cubic~fcc! lattices. The values ofw and NR used in the
simulations are also shown.w, NR , D1, D2, andD3 are for lattices
with free boundary conditions;w8, NR8 , D18 , D28 , andD38 are for
lattices with periodic boundary conditions.

Percolation site site site bond

Lattice sc bcc fcc sc

w 345 345 345 345
NR 55 000 30 000 20 000 25 000
D1 1 1.00460.012 1.15660.017 1.67160.025
D2 1 1.03760.037 1.19460.045 1.67860.038
D3 1 1.28360.029 1.48560.036 0.50360.032

w 345 - - 345
NR 30 000 - - 15 000
D18 1 - - 1.70160.031
D28 1 - - 1.69960.043
D38 1 - - 0.50260.020
r
e

he

ce

of

-
n
-
t

r

lattice, and for bond percolation on a 64364364 sc lattice
with free boundary conditions. The calculatedWn as a func-
tion of x5D1(p2pc)L

yt are shown in Fig. 5, whereD1 is
taken from the last column of Table II. Figure 5 shows th
all calculated results for eachn fall on the same universa
scaling function,Un(x). Sen@25# found that the probability
of getting more than one percolating cluster atpc for site
percolation on sc lattices is about 0.014, which is quite c
sistent with our result:U2(0)'0.013, andUn(0) is vanish-
ing small forn.2.

IV. DISCUSSION

In Ref. @4#, Hu found that finite-size scaling functions fo
percolation on square lattices depend sensitively on bou
ary conditions of the lattice. In particular, atx50, F50.50
for free boundary conditions~fbc!, andF50.93 for periodic
boundary conditions~pbc!. In the present paper, we find tha

FIG. 3. ~a! The calculatedEp for the site percolation on sc, bcc
and fcc lattices and bond percolation on sc lattices, wherex
5D1(p2pc)L

yt5D1z. The scaling function isF(x). The lower
~upper! curves are for free~periodic! boundary conditions.~b! The
calculatedD3PLbyt for the site percolation on sc, bcc, and fcc la
tices and bond percolation on sc lattices as a function ofx, where
x5D2(p2pc)L

yt5D2z. The scaling function isS(x). The lower
~upper! curves are for free~periodic! boundary conditions.
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finite-size scaling functions for percolation on thre
dimensional lattices, e.g.,F(x) of Fig. 3~a!, also depend sen
sitively on boundary conditions of the lattice. In particular,
x50, F50.26560.005 for fbc andF50.92460.005 for
pbc. It is of interest to note that as the spatial dimensiona
increases, the difference between the values ofF at x50,
e.g. criticalEp , for pbc and fbc also increases. If this tren
continues, we may predict that for four- and highe

FIG. 4. ~a! Wn(L1 ,L2 ,L3 ,p) for site percolation with free
boundary conditions on 1283128364, 1003100350,
80380340, and 64364332 sc lattices, which are represented
solid, dotted, dashed, and dot-dashed lines, respectively.~b! The
data of~a! are plotted as a function ofz5(p2pc)L

yt. The scaling
functions forWn are denoted byFn(z). The monotonic decreasin
function is forF0. The S shaped curve is forF1. The bell shaped
curves from top to bottom are forf n(z), with n being 2, 3, 4 and 5,
respectively.
t

y

-

dimensional lattices, the difference of criticalEp for pbc and
fbc would be larger than 0.659.

When we used the histogram Monte Carlo renormali
tion group method to calculate thermal scaling poweryt and
fractal dimensionD for percolation on planar lattices@2,4#,
we found that lattices of medium size can give very accur
yt , and we should use much larger lattices in order to obt
a D of comparable accuracy. We have a similar experie
when we calculateyt andD for three-dimensional lattices. I
we increase the lattice sizes, we can increase the accura
D shown in Table I.

In Refs. @18,22#, we found universal finite-size scalin
functions forEp , P, andWn of bond and site percolation o
planar lattices. In the present paper, we find that the res
for percolation on planar lattices may be extended to per
lation on three-dimensional lattices.
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FIG. 5. The universal finite-size scaling functionUn(x), for Wn

on theL3 system. It is plotted as a function of scaling variablex
5D1(p2pc)L

yt, whereD1 is taken from Table II. The solid and
dot-dashed lines respresent, respectively, site and bond percol
on sc lattices with free boundary conditions. Here only results
n50, 1, and 2 are shown. The monotonic decreasing~increasing!
function is forF0(F1). The bell shaped curve is forF2.
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